Что такое двигатель и какой его принцип работы?
Называть двигатель сердцем автомобиля – сравнение банальное, но точное. Можно сколько угодно перебирать подвеску, настраивать рулевое управление или совершенствовать тормоза – если мотор не в порядке, всё это превращается в пустую трату времени.
Сегодня на дорогах можно встретить автомобили разных поколений: и со старенькими карбюраторными ДВС, и с мощными дизельными моторами, управляемыми электроникой, и даже новейшие водородные двигатели, которые еще только начинают совершенствоваться. И во всём этом разнообразии довольно сложно сориентироваться, если не знать основ и принципов работы двигателя внутреннего сгорания.
- Что такое ДВС и для чего он нужен?
- Устройство двигателя внутреннего сгорания
- Принцип работы двигателя
- Принцип работы четырехтактного двигателя
- Принцип работы двухтактного двигателя
- Классификация двигателей
- По рабочему циклу
- По типу конструкции
- По количеству цилиндров
- По расположению цилиндров
- По типу топлива
- По принципу работы ГРМ
- По принципу подачи воздуха
- Преимущества и недостатки ДВС
- Заключение
Что такое ДВС и для чего он нужен?
Чтобы транспорт ехал, что-то должно приводить его в движение. В разные времена это были запряженные животные, затем на смену пришли паровые и электродвигатели (да, прародители современных автомобилей появились даже раньше, чем традиционные ДВС), затем моторы, работающие на горючем топливе.
Современный двигатель внутреннего сгорания – это механизм, преобразующий энергию вспышки топлива (тепла) в механическую работу. Несмотря на достаточно громоздкую конструкцию, на сегодняшний день ДВС остается самым удобным источником энергии.
Электротранспорт, конечно, всё больше входит в обиход, но время его «заправки» сводит на нет все преимущества – канистру с электричеством в багажник не положишь.
Свое применение ДВС нашел во многих сферах: по одинаковому принципу работают автомобили, мотоциклы и скутеры, сельскохозяйственная и строительная техника, водный транспорт, двигатели самолетов, военная техника, газонокосилки… То есть, практически всё, что ездит или летает.
Устройство двигателя внутреннего сгорания
Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой.
Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.
-
Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.
Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.
Принцип работы двигателя
Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.
Принцип работы четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
- На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
- Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
- Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
- И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.
Работа четырехтактного двигателя
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
- В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
- Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Работа двухтактного двигателя
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.
Классификация двигателей
Поскольку ДВС растут и совершенствуются уже более 100 лет, набралось довольно много их разновидностей. Классифицируют двигатели по разным признакам и свойствам.
По рабочему циклу
Это уже известное нам деление двигателей на двухтактные и четырехтактные.
- Двухтактные – один полный рабочий цикл состоит из двух этапов, при этом коленвал совершает один оборот;
- Четырехтактные – за один полный рабочий цикл проходит четыре этапа, а коленвал делает два оборота.
По типу конструкции
Есть два основных типа ДВС: поршневой и роторный.
- Поршневой – это тот самый привычный нам двигатель с поршнями, цилиндрами и коленвалом, который стоит практически в любом транспорте;
- Роторно-поршневой, он же двигатель Ванкеля – особый вид ДВС, в котором вместо поршня используется трехгранный ротор, а камера сгорания имеет овальную форму. Двигатель Ванкеля использовался в некоторых моделях автомобилей, но сложность производства и обслуживания заставила инженеров отказаться от применения этой конструкции.
Работа роторного двигателя
По количеству цилиндров
В ЦПГ двигателя может устанавливаться от 1 до 16 цилиндров, для легковых автомобилей это обычно 3-8. Как правило, конструкторы предпочитают четное количество цилиндров, чтобы уравновесить циклы их работы. Самое известное исключение из правил – двигатель Ecoboost, разработанный концерном Ford, во многих моделях которого ставится как раз три цилиндра.
По расположению цилиндров
Компоновка ЦПГ не всегда рядная (хоть рядный двигатель – самый простой в ремонте и обслуживании). В зависимости от фантазии инженеров, двигатели делятся на несколько типов компоновки:
-
Рядные – все цилиндры выстроены в один ряд и на один коленвал.
В легковых автомобилях используются рядные, V-, VR-, W- и U-образные двигатели, а в некоторых моделях и оппозитные. А вот радиальные применяются в авиационной технике.
По типу топлива
Классика жанра здесь – бензиновые и дизельные двигатели. Набирают популярность газовые, постепенно совершенствуются гибридные и водородные.
- Бензиновые двигатели требуют поджига топливно-воздушной смеси. Для этого используются свечи и катушки зажигания, работающие синхронно с движением коленвала. Особенность бензиновых двигателей – способность развивать большую скорость;
- Дизельные двигатели работают по принципу самовоспламенения топливно-воздушной смеси. В них нет свечей зажигания, зато есть система прямого впрыска, требующая подачи топлива под большим давлением. Для запуска двигателя используются свечи накаливания, которые предварительно подогревают воздух и отключаются после прогрева камеры сгорания. Дизельные двигатели способны развивать большую мощность, но не скорость, поэтому используются в тяжелой технике;
- Газовые установки популярны за счет низкой стоимости сжиженного газа (по сравнению с бензином). Газовые двигатели работают при более высоких температурах, чем бензиновые или дизельные, что, в свою очередь, требует качественной работы системы охлаждения и особого моторного масла;
- Гибридные – это комбинация ДВС и электромотора. В стандартном режиме вождения задействован только электрический мотор, а ДВС задействуется при необходимости повысить нагрузку или подзарядить аккумуляторы;
- Водородные двигатели до недавнего времени были довольно опасны: кислород и водород, выработанные из воды путем электролиза, сгорали нестабильно и с риском детонации. Сравнительно недавно был найден другой способ использования водородно-кислородного соединения: водород заправляется в баки (причем заправка длится около 3 минут), кислород захватывается из воздуха, после чего они поступают на электрогенератор, а не в ДВС. По сути, получается процесс, обратный процессу электролиза, в результате которого образуется электроэнергия и вода. Первым автомобилем с водородной силовой установкой стала Toyota Mirai.
По принципу работы ГРМ
Ключевой элемент газораспределительного механизма – распредвал, объединенный с коленвалом двигателя с помощью ремня или цепи ГРМ. Распредвал за счет своей конструкции регулирует работу клапанов, и вся система работает синхронно с частотой оборотов двигателя. Обрыв ремня ГРМ – почти всегда путь на капремонт.
В зависимости от компоновки ЦПГ в двигателе может стоять 1 распредвал, если двигатель рядный, или 2-4 распредвала, если это V-образная компоновка.
Однако стандартная система ГРМ перестала отвечать современным требованиям к мощности и экономичности двигателей. И теперь, кроме стандартной механической системы, есть адаптивные системы, такие как Honda i-VTEC, VTEC-E и DOHC, Toyota VVT-i, Mitsubishi MIVEC, разработки компаний Volkswagen и Eco-Motors, а также пневматическая система ГРМ, установленная на Koenigsegg Regera и в перспективе добавляющая 30% мощности двигателю.
По принципу подачи воздуха
Еще одна классификация, которая часто встречается в обиходе: деление двигателей на атмосферные и турбированные.
- Атмосферный двигатель – это тот самый ДВС, который затягивает порцию воздуха при движении поршня в цилиндре вниз. Подача кислорода идет стандартным способом;
- Турбина (турбокомпрессор) – это дополнительная подкачка воздуха в камеру сгорания. Турбокомпрессор работает за счет потока выхлопных газов, вращающих турбину, которая, в свою очередь, нагнетает крыльчаткой воздух во впускной коллектор.
Работа двигателя с турбиной
Турбированные двигатели имеют свои преимущества и недостатки: с одной стороны, чем больше воздуха, тем больше мощности может развить двигатель. С другой – эффект турбоямы способен серьезно попортить нервы любителю спортивной езды. Да и лишний узел – лишнее слабое место, так что турбированные двигатели (или битурбо, как называют мотор с двумя турбинами) нравятся далеко не всем. Иногда хорошо собранный атмосферник может «заткнуть за пояс» любой наддув.
Преимущества и недостатки ДВС
- Если говорить о преимуществах двигателей внутреннего сгорания, то на первое место выйдет удобство для пользователя. За столетие бензиновой эпохи мы обросли сетью АЗС и даже не сомневаемся, что всегда будет возможность заправить машину и ехать дальше. Есть риск не встретить заправочную станцию – не беда, можно взять с собой бензин в канистрах. Именно инфраструктура делает использование ДВС таким комфортным.
- С другой стороны, заправка двигателя топливом занимает пару минут, проста и доступна. Залил бак – и едь себе дальше. Это не идет ни в какое сравнение с подзарядкой электромобиля.
- Способность служить долго при грамотном обслуживании – то, чем могут похвастаться знаменитые двигатели-миллионники. Регулярное своевременное ТО способно сохранить работоспособность мотора на очень долгий срок.
- И, конечно, не будем забывать про милый сердцу рев мощного мотора. Настоящий, честный, совершенно не похожий на озвучку современных электрокаров. Не зря же некоторые автоконцерны специально настраивали звук двигателей своих машин.
Какой же основной недостаток у ДВС?
- Конечно, это низкий КПД — в пределах 20-25%. Самый высокий на сегодняшний день показатель КПД среди ДВС – 38%, который выдал двигатель Toyota VVT-iE. По сравнению с этим электромоторы смотрятся гораздо выигрышней, особенно с системами рекуперативного торможения.
- Второй значительный минус – это общая сложность всей системы. Современные двигатели давно перестали быть такими «простачками», как описывается в схеме классического ДВС. Наоборот, требования к моторам становятся всё выше, сами моторы – более точными и сложными, появляются новые технологии и инженерные решения. Всё это дополнительно усложняет конструкцию двигателя, и чем она сложней, тем больше в ней слабых мест.
Так что, если раньше сосед дядя Вася перебирал двигатель своей «копейки» самостоятельно, но на новеньких современных машинах вряд ли кто-то полезет в тонкую систему ДВС без специального оборудования и инструментов.
И, наконец, нефтяная эра сама по себе отходит в прошлое. Не зря же растут требования к экологической безопасности транспорта, а заодно и эффективность солнечных батарей. Да, бензиновые и дизельные моторы еще не скоро исчезнут с улиц, но уже Европа борется за внедрение электромобилей, благодаря которым человечество когда-нибудь забудет слово «бензиновый смог».
Заключение
Несмотря на любые недостатки, ДВС остается «главным по транспорту». Химики придумывают новые моторные масла, инженеры разрабатывают новые системы ГРМ, а производители бензина не спешат снижать цены. Всё потому, что с удобством и автономностью привычных нам двигателей пока не может сравниться ни один вид транспорта.
Двигатели: характеристики, типы, виды
Топливо
Топливо, на которое рассчитан двигатель, определяет многие особенности его конструкции и использования.
— Бензин. Бензиновые двигатели относительно недороги, к тому же заметно проще в эксплуатации, обслуживании и ремонте, чем дизельные, благодаря чему весьма популярны. Их главный недостаток — более высокая цена горючего.
— Дизель. Дизельное топливо (солярка) обходится заметно дешевле, чем бензин, что считается одним из главных достоинств данного типа двигателей. Помимо этого, они имеют хороший КПД и невысокие значения удельного расхода топлива, а также обеспечивают более высокий крутящий момент на малых оборотах, чем бензиновые того же объёма, благодаря чему хорошо подходят для тяжёлых работ. С другой стороны, сами моторы получаются довольно дорогими и сложными в эксплуатации, а для их запуска требуются мощные электростартеры. Как следствие, дизельных двигателей общего назначения выпускается относительно немного, в основном это агрегаты средней и высокой мощности.
— Керосин. Керосиновые двигатели по многим характеристикам и особенностям работы аналогичны описанным выше бензиновым (многим моделям даже требуется небольшое количество бензина для запуска). Основное различие заключается именно в используемом топливе. Керосин обходится несколько дешевле бензина (при закупке оптом), а если горючего нужно сравнительно немного — его можно достать в практически в любом хозяйственно-с . троительном магазине (это нередко оказывается проще, чем ехать на заправку за бензином). Что касается рабочих характеристик, то создатели керосиновых двигателей нередко заявляют для них экономный расход топлива и пригодность к длительной работе под большими нагрузками; однако это связано скорее со специальными конструктивными решениями, чем с характеристиками используемого топлива.
Мощность
Номинальная мощность двигателя в лошадиных силах (по сути — максимальная мощность, которую может выдать агрегат в нормальном режиме работы, без перегрузок). Несмотря на популярность обозначения в ваттах (см. ниже), лошадиная сила (л.с.) до сих пор довольно широко используется для указания мощности двигателей внутреннего сгорания. 1 л.с. приблизительно составляет 735 Вт.
В целом чем мощнее двигатель — тем большую скорость и тяговое усилие он способен развить. С другой стороны, данный показатель напрямую влияет на вес, габариты, а главное — стоимость агрегата, притом что реальная потребность в высокой мощности имеется сравнительно редко. Поэтому выбирать по данному показателю стоит с учётом особенностей планируемого применения; конкретные рекомендации по подбору двигателя под определённую технику и задачи можно найти в специальных источниках. Отметим только, что модели одинаковой мощности могут различаться по скорости и «тяговитости»; подробнее см. «Частота вращения вала».
В целом показатели до 8 л.с. считаются невысокими, до 13 л.с. — средними, более 13 л.с. — высокими.
Мощность
Номинальная мощность двигателя (наибольшая выдаваемая им на нормальном режиме мощность) в киловаттах. Изначально мощность двигателей внутреннего сгорания (ДВС) принято было обозначать в лошадиных силах, однако сейчас нередко встречается также запись в ваттах/киловаттах; это, в частности, облегчает сравнение по мощности ДВС и электромоторов. Одни единицы можно перевести в другие: 1 л.с. приблизительно равна 0,735 кВт.
В целом чем мощнее двигатель — тем большую скорость и тяговое усилие он способен развить. С другой стороны, данный показатель напрямую влияет на вес, габариты, а главное — стоимость агрегата, притом что реальная потребность в высокой мощности имеется сравнительно редко. Поэтому выбирать по данному показателю стоит с учётом особенностей планируемого применения; конкретные рекомендации по выбору двигателя под определённую технику и задачи можно найти в специальных источниках. Отметим только, что модели одинаковой мощности могут различаться по скорости и «тяговитости»; подробнее см. «Частота вращения вала».
Макс. крутящий момент
Максимальный крутящий момент, развиваемый двигателем при работе. Отметим, что такой показатель обычно достигается только на определенных оборотах — этот нюанс может уточняться в характеристиках.
Крутящий момент можно упрощенно описать как усилие, выдаваемое двигателем на вал. Чем выше это усилие — тем более «тяговитым» является мотор, тем лучше он преодолевает сопротивление и справляется с высокими нагрузками. Значение крутящего момента напрямую связано с мощностью. К примеру, для моделей на 5 л.с. и менее крутящий момент до 10 Нм считается вполне нормальным показателем, двигатели на 4 – 7 л.с. выдают от 10 до 20 Нм, а значения в 20 Нм и более встречаются в агрегатах мощностью не менее 8 л.с. В то же время двигатели одинаковой мощности могут различаться по фактическому усилию. Так что данный показатель неплохо характеризует возможности агрегата в сравнении с аналогами.
Стоит сказать, что многие считают крутящий момент более достоверным и наглядным параметром, чем мощность: последняя может указываться по разному (номинальная, максимальная и т.п.), тогда как крутящий момент — характеристика вполне однозначная.
Тип вала
Тип вала, точнее — тип крепления под ступицу, предусмотренного на хвостовике вала.
Напомним, ступицей называют деталь с отверстием, которая надевается на вал; именно через эту деталь вращение передается на механизм, с которым используется двигатель. Общее правило в данном случае таково: тип вала должен соответствовать типу крепления на ступице, иначе нормальная работа будет невозможна. В наше время встречаются агрегаты с валами под шпонку, под шлиц, под конус и под резьбу. Вот более подробное описание каждого из вариантов:
— Шпонка. Соединение с использованием шпонки — продолговатой детали, размещенной в специальном продольном пазу. Если точнее, то пазов два: один располагается на валу, другой — на ступице, а шпонка плотно устанавливается в пространстве, образованном пазами, и соединяет вал и ступицу. Такие соединения просты и в то же время вполне функциональны, благодаря чему широко распространены и встречаются в двигателях всех ценовых и «весовых» категорий. С другой стороны, шпоночное соединение менее надежно, чем шлицевое, и хуже подходит для работы на высоких оборотах и/или больших нагрузках.
— Шлицы. Соединение на основе шлицов — продольных прорезей. Чаще всего их на валу делается шесть, и посадочное место на ступице имеет соответствующую форму — в виде характерной звездочки. Шлицевое соедине . ние сложнее и дороже шпоночного, а большое количество прорезей снижает прочность вала и его приходится делать более толстым. Однако само соединение получается очень надежным, так как оно равномерно распределяет нагрузку при вращении. Поэтому именно шлицы рекомендуются для работы на высоких нагрузках.
— Конус. Вал с хвостовиком в виде конуса (сужающийся к концу), в центре которого выполнено отверстие с внутренней резьбой. Применяется довольно редко, в основном на довольно мощных агрегатах — от 7 л.с. и выше.
— Резьба. Хвостовик цилиндрической формы с наружной резьбой. Достаточно специфический вариант, не получивший особого распространения — в частности, из-за того, что резьба по мере использования склонна ослабляться от вибраций, а для соединения и разъединения хвостовика и ступицы могут потребоваться значительные усилия.
Расположение вала
Штатное рабочее расположение вала двигателя. Для разных видов техники оптимальным будет разное расположение: так, газонокосилки рассчитаны на вертикальный вал, а вот мотоблоки обычно делаются под «горизонтальные» двигатели. В любом случае выбор по данному параметру определяется прежде всего требованиями механизма, для которого покупается двигатель.
Существуют агрегаты со свободным расположением, нормально работающие в любом положении — как горизонтальном, так и вертикальном. Такая универсальность будет особенно полезна, если двигатель планируется переставлять с одного механизма на другой, и может потребоваться разная ориентация вала — либо если агрегат предполагает использование в разных рабочих положениях, и двигатель должен будет нормально переносить наклоны и повороты. Последнее актуально прежде всего для мотокос (бензотриммеров).
Вращение вала
Частота вращения вала
Наибольшая скорость вращения вала, обеспечиваемая двигателем. Перед покупкой стоит убедиться, что данный показатель соответствует характеристикам техники, в которую планируется устанавливать двигатель — слишком высокая частота вращения может привести к повреждению рабочего инструмента, узлов трансмиссии и т.п.
Также стоит учитывать, что большая скорость вращения (при той же мощности двигателя и характеристиках передачи) означает меньший крутящий момент, и наоборот. Поэтому этот параметр позволяет сравнивать двигатели по соотношению «скорость/тяга» (правда, только при условии, что они не имеют понижающих редукторов — см. «Функции»).
Длина вала
Диаметр вала
Диаметр вала двигателя, точнее — диаметр внешней его части, находящейся за корпусом. Данные о диаметре вала нужны для уточнения совместимости двигателя с механизмом, для которого он покупается.
Сейчас на рынке представлены валы с таким диаметром: 16 мм, 19 мм, 20 мм, 22 мм, 25 мм.
Внутренняя резьба вала
Рабочий цикл
Данный показатель определяется количеством движений поршня (тактов) за один цикл. Отметим, что дизельные моторы (см. «Топливо») на сегодняшний день делаются только четырёхтактными, поэтому ниже речь пойдёт только о сравнении бензиновых ДВС
— Двухтактный. Двухтактная схема работы позволяет создавать относительно простые, недорогие, компактные и в то же время мощные двигатели. С другой стороны, она приводит к повышению шума и расхода топлива, к тому же для заправки используется бензино-масляная смесь, готовить которую нужно вручную (лишь в единичных случаях имеется функция автосмешивания). Из-за этого данный вариант не получил особой популярности.
— Четырехтактный. Четырехтактные двигатели, по сравнению с двухтактными, имеют меньшую мощность на единицу объёма, несколько более сложную конструкцию и, соответственно, стоят дороже. В то же время такие агрегаты просты в эксплуатации, отличаются меньшим уровнем шума и потреблением топлива, а заправка бензина и масла в них осуществляется раздельно.
Рабочий объем
Кол-во цилиндров
Количество цилиндров в двигателе. Данный параметр подбирается производителем с таким расчётом, чтобы рабочий объём (см. выше) оптимально распределялся между отдельными цилиндрами. Поэтому в целом он является второстепенным, и при выборе стоит смотреть не столько на количество цилиндров, сколько на общий уровень двигателя и отдельные практически значимые характеристики — прежде всего топливо, мощность и расположение вала (см. выше). Отметим только, что чем больше объём и выше мощность — тем больше может быть предусмотрено цилиндров.
Сейчас на рынке представлены двигатели с таким количеством цилиндров: 1, 2, 3, 4, 6.
Охлаждение
Способ охлаждения двигателя.
— Воздушное. Охлаждение за счёт воздуха, контактирующего с нагревающимися частями двигателя; также в конструкции часто предусматривается вентилятор, обеспечивающий обдув таких частей и улучшающий отвод тепла. Главными достоинствами воздушного охлаждения являются простота, компактность, минимальная стоимость и в то же время высокая надёжность: в конструкции отсутствуют сложные жидкостные контуры, требующие герметичности, а многие модели способны безопасно проработать довольно длительное время даже при выходе вентилятора из строя (особенно при низких температурах окружающего воздуха). В то же время подобные системы имеют довольно невысокую эффективность и слабо подходят для агрегатов высокой мощности со значительным тепловыделением.
— Жидкостное. Охлаждение за счёт циркуляции воды или специальной жидкости, которая отводит тепло от нагревающихся деталей и рассеивает его в специальном радиаторе. Такое охлаждение отличается высокой эффективностью и хорошо работает даже с наиболее мощными двигателями общего назначения. С другой стороны, жидкостные системы довольно дороги, тяжелы, громоздки, к тому же требуют обслуживания и слежения за герметичностью. А потребность в интенсивном отводе тепла испытывают лишь самые «тяжеловесные» двигатели общего назначения. Как следствие, данный вариант встречается в основном среди моделей с высокой мощностью, для которых воздушного охлаждения было бы н . едостаточно.
Степень сжатия
Степень сжатия, обеспечиваемая двигателем.
Степенью сжатия называют соотношение полного объема каждого цилиндра (надпоршневого пространства при крайнем нижнем положении поршня) к объему камеры сгорания (надпоршневого пространства при крайнем верхнем положении поршня). Проще говоря, данный параметр описывает, во сколько раз уменьшается надпоршневое пространство при перемещении поршня из нижней точки в верхнюю.
Более высокая степень сжатия, с одной стороны, способствует повышению эффективности двигателя и позволяет добиться большей мощности (по сравнению с аналогами того же объема) и меньшего расхода топлива (по сравнению с аналогами той же мощности). С другой стороны, при увеличении степени сжатия повышается также вероятность детонации («стука в двигателе»), что выдвигает повышенные требования к качеству горючего.
Наименьшая степень сжатия, встречающаяся в современных двигателях, составляет около 5,6:1, наибольшая — порядка 19:1.
Диаметр поршня
Рабочий ход поршня
Объем топливного бака
Номинальный объём топливного бака двигателя — то есть наибольшее количество топлива, которое можно туда безопасно залить. Зная расход топлива (см. ниже), по объёму бака можно оценить время работы агрегата на одной заправке — разделив вместимость бака на расход.
Крупные резервуары для горючего, с одной стороны, позволяют долгое время работать без дозаправки, с другой — заметно сказываются на габаритах и весе двигателя. Также отметим, что многие модели допускают дозаправку «на ходу». При выборе объёма бака производители учитывают эти моменты, а также «весовую категорию» и специфику применения двигателя.
Объем масла в картере
Расход топлива
Удельный расход топлива
Тип запуска
Штатный способ запуска двигателя. Для запуска двигателя внутреннего сгорания требуется проворот коленвала, а разные типы запуска различаются в зависимости от того, каким способом обеспечивается этот проворот:
— Ручной. Запуск за счёт мускульной силы оператора: обычно для проворота вала нужно дёрнуть за специальный тросик, хотя возможны и другие варианты (например, пусковая рукоятка). Ручные системы не требуют аккумуляторов и в целом отличаются простотой, компактностью, невысокой стоимостью и надёжностью; собственно, кроме человека, для запуска ничего не требуется. С другой стороны, процедура получается не очень удобной для самого пользователя: дёргать за тросик нужно довольно сильно и резко, что может оказаться затруднительным, особенно с непривычки. Также отметим, что данный способ малопригоден для мощных тяжёлых двигателей.
— Электростартер. Запуск за счёт отдельного электромотора (стартера), проворачивающего вал. Питание для мотора обеспечивается от специального аккумулятора. Такой способ значительно удобнее ручного, т.к. пользователю, по сути, достаточно нажать кнопку; при этом он пригоден даже для самых «солидных» моторов. В то же время стартер и аккумулятор заметно сказываются на цене, весе и габаритах двигателя, а при севшей батарее вся система становится бесполезной (впрочем, на этот случай может предусматриваться «аварийный» ручной запуск).
Турбонаддув
Наличие системы турбонаддува в конструкции двигателя.
Принцип работы турбонаддува заключается в использовании энергии выхлопных газов для повышения давления топливо-воздушной смеси на входе в цилиндры. За счёт этого можно добиться заметного роста мощности без увеличения рабочего объёма двигателя; да и удельный расход топлива (см. выше) получается меньше, чем у нетурбированного двигателя того же объёма. В то же время технические особенности турбонаддува таковы, что в двигателях общего назначения его имеет смысл устанавливать только в наиболее мощные модели (от 20 л.с.) на дизельном топливе. При этом стоит также учитывать, что подобные агрегаты довольно дороги и сложны в эксплуатации/ремонте.
Функции
— Понижающий редуктор. Приспособление, понижающее обороты вала на выходе из двигателя (относительно той скорости, с которой он вращается непосредственно внутри). Смысл такого понижения заключается в том, что при снижении оборотов пропорционально возрастает вращающий момент и тяговое усилие, что бывает весьма полезно при тяжёлых работах — например, вспашке земли на мотоблоке. Правда, за это приходится платить уменьшением скорости работы.
— Шкив на валу. Наличие шкива на валу пригодится в том случае, если двигатель планируется использовать с ременной передачей. Как правило, шкив можно снять при необходимости.
— Предохранитель электроцепи. Приспособление, защищающее электрические цепи двигателя (а в некоторых случаях — и внешнего оборудования) от повреждений при коротких замыканиях и других подобных неполадках. В случае критического повышения силы тока предохранитель срабатывает, размыкая цепь. Данная особенность встречается преимущественно в моделях с электростартерами (см. «Тип запуска»). Отметим, что предохранители часто делаются одноразовыми и после срабатывания требуют замены.
— Катушка освещения. Небольшой генератор, работающий от вращения вала двигателя. Предназначается в основном для питания фар и других осветительных приборов — габаритов, поворотников и т. п. Наличие катушки освещения позво . ляет обойтись без внешних источников питания при подключении таких приборов.
Уровень шума
Уровень шума, производимого двигателем при работе. Данный параметр является довольно приблизительным, т.к. в характеристиках обычно указывается некое среднее значение. А в некоторых ситуациях (например, резком возрастании нагрузки на валу) шум может заметно усиливаться. Также не стоит забывать, что узлы и механизмы машины, в которой установлен двигатель, также производят определённый шум, который добавляется к шуму двигателя. Тем не менее, чем меньше шума выдаёт мотор — тем, как правило, комфортнее его использование.
Уровень шума принято измерять в децибелах; это нелинейная величина, поэтому оценивать громкость проще всего по сравнительным таблицам, которые можно найти в специальных источниках. Самые «тихие» двигатели общего назначения выдают порядка 70 дБ, это можно сравнить с проездом грузовика на расстоянии 8 – 10 м; самые громкие — чуть меньше 100 дБ (шум поезда метро).
Просто о сложном. Двигатель
Все вышло из воды
Двигатель – это устройство, которое преобразует какой-либо вид энергии в механическую работу.
Двигатели разделяют на первичные и вторичные.
К первичным относятся те виды двигателей, которые преобразуют природные энергетические ресурсы в механическую работу. Это ветряное и водяное колесо, гиревой механизм, тепловые двигатели.
Вторичные – двигатели, которые преобразуют выработанную или накопленную энергию другими источниками. К ним относят электрические, пневматические и гидравлические.
Первичные двигатели, такие как парус и водяное колесо, были известны с незапамятных времен и использовались повсеместно.
До середины XVII века человек обходился первичными двигателями и довольствовался силой воды, ветра и тяжести.
Первым шагом на пути к двигателю стала пароатмосферная машина, созданная по проектам французского физика Дени Папена и английского механика Томаса Севери, которая сама по себе не могла служить механическим приводом, и к ней необходимо было водяное колесо.
В 1763 году механик Иван Ползунов по собственному проекту изготовил стационарную паровую машину, которая хоть и была далека от совершенства, но работала без сбоев.
К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, которая была названа универсальным паровым двигателем.
В машине был предусмотрен жесткий поршень, по обе стороны которого поочередно подавался пар. Подача пара происходила автоматически, а поршень через кривошипно-шатунную систему вращал маховик, который обеспечивал плавность хода. Такая модификация машины Севери не была привязана к водонапорной башне и могла стать самостоятельным приводом различных механизмов. Уатт создал элементы, которые в дальнейшей истории двигателестроения в той или иной вариации входили во все паровые машины, получившие широкое распространение. Их использовали как приводы станков, экипажей для перевозки людей и грузов, судов и локомотивов на железных дорогах.
Следующим шагом в двигателестроении стала паровая турбина, изобретенная в конце XIX века, которая применялась на морских судах и на электростанциях в начале XX века.
Индустрия двигателестроения не стояла на месте, и в конце XIX века на первый план вышли двигатели внутреннего сгорания.
Первым в семействе ДВС стал механизм, созданный французским инженером Этьеном Ленуаром в 1860 году. Его конструкция представляла собой одноцилиндровый двухтактный газовый двигатель. Ленуар использовал принцип работы поршня двигателя Уатта, но рабочим телом служил не пар, а продукты сгорания смеси воздуха и светильного газа, вырабатываемого газогенератором.
Двигатель Ленуара стал первым в истории серийно выпускавшимся ДВС.
В 1897 году инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, который был впоследствии назван его именем.
Двигатели внутреннего сгорания стали основой развития автомобильного транспорта в XX веке.
В первой половине XX века были созданы новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 1950-х и ядерные силовые установки.
В 1834 году русский ученый Борис Якоби создал первый пригодный для практического использования вторичный двигатель – электродвигатель постоянного тока.
Двигатели можно классифицировать по источнику энергии, по типам движения, по устройству, по назначению и т.д.
Отрасль двигателестроения является одной из наиболее развивающихся. В год по всему миру подается до 50 заявок на патентование в категории «Двигатели». В основном это модификации существующих механизмов с новым соотношением элементов либо с принципиальными новинками. Новые конструкции же появляются редко.
А вместо сердца – пламенный мотор
В авиации используются в основном тепловые двигатели, которые создают тягу, необходимую для поднятия летательного аппарата в воздух.
По способу создания тяги авиационные двигатели можно разделить на три группы: винтовые, реактивные и комбинированные.
Винтовые двигатели создают тягу вращением воздушного винта, а реактивные преобразуют энергию топлива в кинетическую энергию вытекающей из двигателя газовой струи, вызывающей силу реакции, непосредственно используемой в качестве движущей силы. Воздушно-реактивные двигатели используют для сгорания кислород атмосферного воздуха.
Комбинированные создают тягу, складывающуюся из силы реакции потока продуктов сгорания, вытекающих из двигателя, и тяги, создаваемой обычным или специальным воздушным винтом. Комбинированные двигатели разделяются на турбовинтовые, турбореактивные и винтовентиляторные. Также их называют газотурбинными авиадвигателями.
Такие двигатели с легкостью поднимают в небо трансатлантические лайнеры, но их мощности недостаточно для того, чтобы поднять ракету в космос.
Для ракет используют реактивные двигатели, в них для сгорания топлива используется окислитель, транспортируемый самим летательным аппаратом.
Кроме того, сила тяги реактивного двигателя не зависит от наличия окружающей среды, а также от скорости самой ракеты.
Взлетные технологии
Развитие отрасли двигателестроения в России, стремящейся к независимости от импортных механизмов, началось в 1980-х гг. Такие предприятия, как УМПО, НПП «Мотор», рыбинское НПО «Сатурн», включились в мировую гонку за создание передового двигателя, который составит конкуренцию продукции таких гигантов промышленности, как Pratt & Whitney, которой комплектуют самолеты линейки Boeing и Airbus.
В результате многолетней кропотливой работы всех предприятий и НИИ отрасли, а также интеграции частного и государственного капитала был создан авиационный двигатель ПД-14. Он предназначен для новейшего российского среднемагистрального самолета МС-21, который в конце 2017 года совершил тестовый перелет с аэродрома корпорации «Иркут» на аэродром Жуковский для проведения дальнейших испытаний.
ПД-14 представляет собой турбореактивный двухконтурный двухвальный двигатель. Взлетная тяга ПД-14 может достигать 18 тонн.
Эксперты сравнивают ПД-14 с двигателями для среднемагистральных самолетов компаний Pratt & Whitney и Rolls-Royce.
На базе ПД-14 ведутся разработки вертолетного двигателя ВК-2500М. Подготовка демонстрационной модели двигателя нового поколения запланирована на 2021 год. Как и в ПД-14, в конструкции ВК-2500М будут использованы новейшие материалы, что позволит облегчить массу на 15% по сравнению с существующими аналогами без потери мощности.
Первая модификация указанного двигателя ВК-2500 активно вводится в эксплуатацию, а также выводится на международный рынок путем валидации сертификатов в странах-импортерах.
Мы наращиваем объемы производства двигателей ВК-2500 в интересах государственного заказчика, а также планируем существенно нарастить экспорт. При этом сборка ведется полностью из российских комплектующих
Анатолий Сердюков, индустриальный директор авиационного кластера Госкорпорации Ростех
В отличие от своего предшественника, новый вертолетный двигатель оснащен цифровой системой автоматического управления с современным электронным блоком автоматического регулирования и новейшими датчиками. Использование современных технологий и новейших материалов позволило обеспечить поддержание режимов в более широком диапазоне температур наружного воздуха, повысить ресурсы и показатели топливной экономичности. Такие двигатели позволят вертолетам семейства Ми-17 и аналогичным расширить потенциал своих возможностей в высокогорных районах и районах с жарким климатом.
Российское двигателестроение развивается в направлении как гражданской, так и военной авиации. В апреле 2018 года завершились работы по стендовым испытаниям опытного двигателя АЛ-41Ф-1.Данная разработка предприятия «ОДК-Уфимское моторостроительное производственное объединение» является двигателем первого этапа для истребителя пятого поколения Су-57. АЛ-41Ф-1 является авиационным турбореактивным двухконтурным двигателем с форсажной камерой и управляемым вектором тяги.
Несмотря на гонку технологий, существуют системы, проверенные временем и доказавшие свою эффективность даже спустя многие годы. Ракетные двигатели РД 107/108 на протяжении более полувека являются основой пилотируемой космонавтики в России.
Именно благодаря РД 107/108 Юрий Гагарин совершил свой легендарный полет. Двигатели РД-107 устанавливаются на блоках первой ступени, а РД-108 – второй.
РД-107/108 показали себя как одни из самых надежных и удачных двигателей, поднимающих космические корабли. Они стоят на серийном производстве и доставляют на орбиту российских космонавтов, американских астронавтов и космических туристов.
Российский ракетный двигатель уже назван рекордсменом. За 60 лет использования он не утратил своего первенства в отрасли. На основе первых двигательных систем разработано 18 модификаций.
Когда в 2011 году США прекратили использование шаттлов, единственным способом отправки космонавтов на МКС остались корабли «Союз», оснащенные двигателями РД-107/108.
Отрасль двигателестроения является одной из наиболее востребованных и перспективных как для развития промышленности страны, так и для выхода на международный рынок.
Внедрение частного капитала и интеграция научно-технической базы предприятий, занимающихся разработкой и производством двигательных систем и комплектующих, позволили создать полный производственный цикл отечественных двигателей, способных составить конкуренцию мировым аналогам.
Рекомендации
Интеграция научно-технических достижений и новейших технологий в области двигателестроения для оперативного реагирования отрасли на запросы гражданской и военной авиации, а также космонавтики и своевременного ввода в эксплуатацию новых двигательных систем, отвечающих вызовам времени и не уступающих мировым аналогам.
Создание и поддержание научно-технической базы, способной обеспечить российскую авиационную отрасль двигательными системами отечественного производства, сокращение объемов импорта, а также вывод конкурентоспособной продукции на мировой рынок.
Устройство и принцип работы двигателя внутреннего сгорания (18 фото+4 видео)
В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.
Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.
Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.
Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.
Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС.
Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт.
Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.
Принцип работы двигателя внутреннего сгорания
Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже.
Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.
Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ).
Первый такт – такт впуска
Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.
Второй такт – такт сжатия
Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.
Третий такт – рабочий ход
Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.
После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.
Четвертый такт – такт выпуска
Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.
После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.
Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами.
Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.
Устройство ГРМ
В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов).
С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.
Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя.
Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных.
Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.
Весь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней.
Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами.
При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно.
Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность.
В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.
Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.
Принцип работы и устройство двигателя
Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.
В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:
- Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
- карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
- инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
- дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
- Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
- Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.
Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.
Устройство двигателя внутреннего сгорания
Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.
Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.
Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.
На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.
Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.
Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.
Принцип работы двигателя
Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:
- Впуск топлива;
- Сжатие топлива;
- Сгорание;
- Вывод отработанных газов за пределы камеры сгорания.
Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.
Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.
Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.
На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.
Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Установка подкрылок на Рено Логан
Подкрылки, конечно же передние и соответственно задние, для арок моделей Логан, имеют ряд незаменимых протекционных и декоративных опций, что способно принести пользу владельцу в плане обеспечения эстетики экстерьеру автомобиля. В данной статье расскажем, как выбрать подкрылки, как передние, так и задние, плюс, как происходит установка подкрылок.
Как выбрать подкрылки?
Не все комплектации Рено Логан способны иметь в своем арсенале подкрылки на фазы. Это заставляет владельцев своих авто предаваться собственноручному поиску, приобретению и процедуре монтажа этих аксессуаров.
Для осуществления корректной установки автовладельцу следует обзавестись следующими знаниями:
- вне зависимости от фаз Рено Логан, сами по себе подкрылки потребуют определения своего конкретного набора с целью последующего монтажа;
- потребуется набор клипс, которые крепятся в заранее подготовленные производителем посадочные места;
- здесь разработчиками предусмотрено наличие отверстий для «посадки» крепящих клипс вне зависимости от фазы модификации авто и стороны машины (правая или же левая);
- официальные магазины запчастей и аксессуаров предоставляют широкий выбор крепежа (клипс), для правильного подбора которых следует узнать их артикул;
- присутствует возможность заменить неправильно подобранные клипсы, поскольку для различных поколений модели Renault Logan они наделялись некоторыми отличиями, в чем легко ошибиться;
- нюансы в артикулах для рассматриваемых нами аксессуаров могут различаться из-за их принадлежности к определенной стороне автомобиля (как правой, так и левой) и его части (к переду или корме);
- роль артикула нельзя переоценить, поскольку он оказывает помощь в корректном подборе комплекта элементов, учитывая фазы модели Рено Логан;
- также данный аспект позволяет осуществить оперативный подбор клипс для каждой из сторон машины и исключить вероятность ошибки. После того, как все приобретено, следует установка подкрылок.
Как выполнить замену данных элементов спереди и в корме авто?
После приобретения по артикулу требуемого комплекта можно приступать к «операции» по замене или первичному монтажу. Ссылаясь на фазу модели Рено Логан, различают пластмассовые подкрылки и аналогичные аксессуары с покрытием, призванным усилить шумоизоляционные возможности автомобиля. Установка подкрылок происходит следующим образом:
- В числе особенностей Рено Логан имеет место присутствие брызговиков только для арок передних колес, а для кормы они конструктивно не предусматриваются. Ввиду этого, установка подкрылков в передке авто носит более трудоемкий характер. Это вызвано необходимостью снятия брызговиков, что составляет основное различие с аналогичным мероприятием в задней части. Данный нюанс является справедливым для обеих сторон автомобиля Renault Logan.
- Для снятия в целях замены откручиваем винты и снимаем пистоны фиксации брызговика к поверхности поперечины кузова. Эти крепежные элементы демонтируются посредством отвертки обычного профиля.
- Монтаж правого или левого аксессуаров следует выполнять сразу после извлечения брызговика. Для этого клипсами крепим элементы к кузову (к аркам, лонжеронам и поперечинам) в заранее предусмотренные посадочные отверстия. Процедуру монтажа брызговиков осуществляем в строго обратной снятию последовательности по одинаковому алгоритму не зависимо от стороны авто.
- Монтаж подкрылков в задней части производим по следующей схеме. Ввиду отсутствия брызговиков у кормы процедура монтажа или замены выполняется существенно быстрее. Места крепления подкрылка расположены на бампере (под 2 винта) и на поверхности арки. Новый аксессуар, подобранный согласно соответствующему артикулу, крепим посредством клипс и винтов. Рекомендуется крепежные средства всегда заменять новыми элементами, что повысит надежность фиксации подкрылка.
Каков итог?
Установка подкрылок на «французе» Renault Logan не способно преподнести какие-либо трудности, что позволяет владельцу выполнить его собственноручно, сэкономив при этом время и средства.
Подкрылки для Renault Logan (Рено Логан)
Подбор по поколению Renault Logan
- Артикул 127306
- Код производителя TOTEM.S.41.47.002
- Бренд Totem
- Артикул 110578
- Код производителя 44702002
- Бренд RIVAL
- Примечание Задний правый
- Артикул 110577
- Код производителя 44702001
- Бренд RIVAL
- Примечание Задний левый
- Артикул 86109
- Код производителя NLL4133003
- Бренд Totem
- Примечание задний левый
- Артикул 86219
- Код производителя NLL4133004
- Бренд Totem
- Примечание задний правый
- Артикул 86035
- Код производителя NLS4133002
- Бренд Totem
- Примечание передний правый
- Артикул 85967
- Код производителя NLS4133001
- Бренд Totem
- Примечание передний левый
- Артикул 86252
- Код производителя NLS4133004
- Бренд Totem
- Примечание задний правый
- Артикул 86141
- Код производителя NLS4133003
- Бренд Totem
- Примечание задний левый
- Артикул 88722
- Код производителя NLL4105003
- Бренд Totem
- Артикул 86108
- Код производителя NLL4131003
- Бренд Totem
- Примечание задний левый
- Артикул 86218
- Код производителя NLL4131004
- Бренд Totem
- Примечание задний правый
Был в наличии
15 февраля 2021
по 1 380 р.
- Артикул 127305
- Код производителя TOTEM.S.41.47.001
- Бренд Totem
- Примечание Передний левый
Был в наличии
22 июля 2021
по 1 900 р.
- Артикул 139202
- Код производителя TOTEM.41.33.0002
- Бренд Totem
- Примечание 2 шт.
Был в наличии
09 сентября 2021
по 1 100 р.